skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Edson, J B"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Energy is transferred from the atmosphere to the ocean primarily through ocean surface waves, and the majority is dissipated locally in the near‐surface ocean. Observations of turbulent kinetic energy (TKE) in the upper ocean have shown dissipation rates exceeding law‐of‐the‐wall theory by an order of magnitude. The excess near‐surface ocean TKE dissipation rate is thought to be driven primarily by wave breaking, which limits wave growth and transfers energy from the surface wave field to the wave‐affected layer of the ocean. Here, the statistical properties of breaking wave dynamics in a coastal area are extracted from visible imagery and used to estimate TKE dissipation rates due to breaking waves. The statistical properties of whitecap dynamics are quantified with Λ(c), a distribution of total whitecap crest length per unit area as a function of crest speed, and used to compute energy dissipation by breaking waves, Sds. Sdsapproximately balances elevated subsurface dissipation in young seas but accounts for only a fraction of subsurface dissipation in older seas. The wind energy input is estimated from wave spectra from polarimetric imagery and laser altimetry. Sdsbalances the wind energy input except under high winds. Λ(c)‐derived estimates of TKE dissipation rates by breaking waves compare well with the atmospheric deficit in TKE dissipation, a measure of energy input to the wave field (Cifuentes‐Lorenzen et al., 2024). These results tie the observed atmospheric dissipation deficit and enhancement in subsurface TKE dissipation to wave driven energy transport, constraining the TKE dissipation budget near the air‐sea interface. 
    more » « less
  2. Abstract This work serves as an observation‐based exploration into the role of wave‐driven turbulence at the air‐sea interface by measuring Turbulent Kinetic Energy (TKE) dissipation rates above and below the sea surface. Subsurface ocean measurements confirm a TKE dissipation rate enhancement relative to the predicted law‐of‐the‐wall (εobs > εp), which appears to be fully supported by wave breaking highlighting the role of the transport terms in balancing the subsurface TKE budget. Simultaneous measurements of TKE dissipation rates on the atmospheric side capture a deficit relative to the law‐of‐the‐wall (εobs < εp). This deficit is explained in terms of wave‐induced perturbations, with observed convergence to the law‐of‐the‐wall at 14 m above mean sea level. The deficit on the atmospheric side provides an estimate of the energy flux divergence in the wave boundary layer. An exponential function is used to integrate in the vertical and provide novel estimates of the amount of energy going into the wave field. These estimates correlate well with classic spectral input parameterizations and can be used to derive an effective wave‐scale, capturing wind‐wave coupling purely from atmospheric observations intimately tied to wave‐induced perturbations of the air‐flow. These atmospheric and oceanic observations corroborate the commonly assumed input‐dissipation balance for waves at wind speeds in the 8‐14 ms−1range in the presence of developed to young seas. At wind speeds above 14 ms−1under young seas ()observations suggest a deviation from the TKE input‐dissipation balance in the wave field. 
    more » « less
  3. Browman, Howard (Ed.)
    Abstract The Observing Air–Sea Interactions Strategy (OASIS) is a new United Nations Decade of Ocean Science for Sustainable Development programme working to develop a practical, integrated approach for observing air–sea interactions globally for improved Earth system (including ecosystem) forecasts, CO2 uptake assessments called for by the Paris Agreement, and invaluable surface ocean information for decision makers. Our “Theory of Change” relies upon leveraged multi-disciplinary activities, partnerships, and capacity strengthening. Recommendations from >40 OceanObs’19 community papers and a series of workshops have been consolidated into three interlinked Grand Ideas for creating #1: a globally distributed network of mobile air–sea observing platforms built around an expanded array of long-term time-series stations; #2: a satellite network, with high spatial and temporal resolution, optimized for measuring air–sea fluxes; and #3: improved representation of air–sea coupling in a hierarchy of Earth system models. OASIS activities are organized across five Theme Teams: (1) Observing Network Design & Model Improvement; (2) Partnership & Capacity Strengthening; (3) UN Decade OASIS Actions; (4) Best Practices & Interoperability Experiments; and (5) Findable–Accessible–Interoperable–Reusable (FAIR) models, data, and OASIS products. Stakeholders, including researchers, are actively recruited to participate in Theme Teams to help promote a predicted, safe, clean, healthy, resilient, and productive ocean. 
    more » « less